LoginForgot Password

Question 1:

  • If surface tension (S), moment of inertia (I) and Planck's constant (h), were to be taken as the fundamental units, the dimensional formula for linear momentum would be

  • A)

    S 3 / 2 I 1 / 2 h 0 S^{3/2}I^{1/2}{\text{\ }h}^{0}

    B)

    S 1 / 2 I 1 / 2 h 0 S^{1/2}I^{1/2}{\text{\ }h}^{0}

    C)

    S 1 / 2 I 3 / 2 h 1 S^{1/2}I^{3/2}h^{- 1}

    D)

    S 1 / 2 I 1 / 2 h 1 S^{1/2}I^{1/2}{\text{\ }h}^{- 1}

    Answer:

    Solution:

    Given: Surface tension (S), moment of inertia (I) and Planck's constant ( h ) (h) are fundamental units.

    To find: Dimensional formula for linear momentum.

    Surface tension

    S =  Force   Length  S = \frac{\text{~Force~}}{\text{~Length~}}\text{,~}

    Moment of inertia = = Mass × ( distance ) 2 \times (\text{distance})^{2} ,

    dimensions of moment of inertia:

    [ I ] = [ M 1 L 2 ] \lbrack I\rbrack = \left\lbrack M^{1}{\text{\ }L}^{2} \right\rbrack

    Unit of Planck's constant = = Joule × \times sec,

    dimensional formula of Planck's constant:

    [ h ] = [ M 1 L 2 T 1 ] \lbrack h\rbrack = \left\lbrack M^{1}{\text{\ }L}^{2}{\text{\ }T}^{- 1} \right\rbrack

    linear momentum = = mass × \times velocity,

    Dimensional formula of linear momentum:

    [ p ] = [ M 1 L 1 T 1 ] \lbrack p\rbrack = \left\lbrack M^{1}{\text{\ }L}^{1}{\text{\ }T}^{- 1} \right\rbrack

    Expressing dimension of [ p ] \lbrack p\rbrack in terms of [ S ] , [ I ] \lbrack S\rbrack,\lbrack I\rbrack and [ h ] \lbrack h\rbrack , let:

    p = ( S ) x ( I ) y ( h ) z p = (S)^{x}(I)^{y}(h)^{z}

    [ M 1 L 1 T 1 ] = [ M 1 T 2 ] x [ M 1 L 2 ] y [ M 1 L 2 T 1 ] z \left\lbrack M^{1}{\text{\ }L}^{1}{\text{\ }T}^{- 1} \right\rbrack = \left\lbrack M^{1}{\text{\ }T}^{- 2} \right\rbrack^{x}\left\lbrack M^{1}{\text{\ }L}^{2} \right\rbrack^{y}\left\lbrack M^{1}{\text{\ }L}^{2}{\text{\ }T}^{- 1} \right\rbrack^{z}

    Equating the exponents: x + y + z = 1 x + y + z = 1

    2 y + 2 z = 1 2y + 2z = 1

    2 x z = 1 \begin{matrix} & \ - 2x - z = - 1 \\ \end{matrix}

    Solving the above set of equations for x , y x,y and z z , we get:

    x = 1 2 , y = 1 2  and  z = 0 . x = \frac{1}{2},y = \frac{1}{2}\text{~and~}z = 0.

    Putting values of x , y x,y and z z in eqn. (v):

    p ( S ) 1 2 ( I ) 1 2 ( h ) 0 p \propto (S)^{\frac{1}{2}}(I)^{\frac{1}{2}}(h)^{0}\text{.~}

    Prev Exam(s):

    JEE MAIN

    - 2019

    , 8 APR SHIFT-2

    Chapter:

    UNITS AND DIMENSIONS

    Question Level:

    L3

    Tags:

    • UNITS AND DIMENSIONS
    • PHYSICS

    Related Topic DIMENSIONAL ANALYSIS

    Related Concept DIMENSIONAL ANALYSIS