LoginForgot Password

Question 1:

  • In SI units, the dimensions of √ε00 is

  • A)

    A 2 T 3 M 1 L 2 A^{2}{\text{\ }T}^{3}M^{- 1}{\text{\ }L}^{- 2}

    B)

    A T 2 M 1 L 1 {AT}^{2}M^{- 1}{\text{\ }L}^{- 1}

    C)

    A T 3 M L 3 / 2 {AT}^{- 3}{ML}^{3/2}

    D)

    A 1 T M L 3 A^{- 1}{TML}^{3}

    Answer:

    1

    Solution:

    To find: Dimension of  ε 0 μ 0  in SI units \text{To\ find:\ Dimension\ of~}\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}\text{~in\ SI\ units}

    Unit of permittivity of free space: (by Coulomb's law),

    ε 0 = c 2 m 2 F \varepsilon_{0} = \frac{c^{2}}{m^{2}\text{F}}

    dimensional formula of

    [ ε 0 ] = [ M 1 L 3 T 4 A 2 ] , \left\lbrack \varepsilon_{0} \right\rbrack = \left\lbrack M^{- 1}L^{- 3}T^{4}A^{2} \right\rbrack,\

    Also,

    ε 0 μ 0 = ε 0 2 ε 0 μ 0 = c ε 0 ( as,  c = 1 ϵ 0 μ 0 ) \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} = \sqrt{\frac{\varepsilon_{0}^{2}}{\varepsilon_{0}\mu_{0}}} = c\varepsilon_{0}\ \left( \text{as,~}c = \frac{1}{\sqrt{\epsilon_{0}\mu_{0}}} \right)

    From (i) and (ii) the dimensions of ε 0 μ 0 \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} will be dimensions of c c times dimensions of ε 0 \varepsilon_{0} :

    ε 0 μ 0 = [ c ] [ ε 0 ] \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} = \lbrack c\rbrack\left\lbrack \varepsilon_{0} \right\rbrack

    = [ L 1 T 1 ] [ M 1 L 3 T 4 A 2 ] = \left\lbrack L^{1}{\text{\ }T}^{- 1} \right\rbrack\left\lbrack M^{- 1}{\text{\ }L}^{- 3}{\text{\ }T}^{4}{\text{\ }A}^{2} \right\rbrack

    = [ M 1 L 2 T 3 A 2 ] = \left\lbrack M^{- 1}{\text{\ }L}^{- 2}{\text{\ }T}^{3}{\text{\ }A}^{2} \right\rbrack

    Prev Exam(s):

    JEE MAIN

    - 2019

    , 8 Apr Shift-01

    Chapter:

    ERRORS IN MEASUREMENT

    Question Level:

    L3

    Tags:

    • PHYSICS
    • ERRORS IN MEASUREMENT

    Related Topic DIMENSIONS OF PHYSICAL QUANTITIES

    Related Concept DIMENSIONS OF PHYSICAL QUANTITIES

    Predict Your JEE Advanced Rank
    Mark's Required for your Favorite Branch
    Ranking of Your Favorite Branch
    Admission Counseling