LoginForgot Password

Question 1:

  • In SI units, the dimensions of √ε00 is

  • A)

    A 2 T 3 M 1 L 2 A^{2}{\text{\ }T}^{3}M^{- 1}{\text{\ }L}^{- 2}

    B)

    A T 2 M 1 L 1 {AT}^{2}M^{- 1}{\text{\ }L}^{- 1}

    C)

    A T 3 M L 3 / 2 {AT}^{- 3}{ML}^{3/2}

    D)

    A 1 T M L 3 A^{- 1}{TML}^{3}

    Answer:

    1

    Solution:

    To find: Dimension of  ε 0 μ 0  in SI units \text{To\ find:\ Dimension\ of~}\sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}\text{~in\ SI\ units}

    Unit of permittivity of free space: (by Coulomb's law),

    ε 0 = c 2 m 2 F \varepsilon_{0} = \frac{c^{2}}{m^{2}\text{F}}

    dimensional formula of

    [ ε 0 ] = [ M 1 L 3 T 4 A 2 ] , \left\lbrack \varepsilon_{0} \right\rbrack = \left\lbrack M^{- 1}L^{- 3}T^{4}A^{2} \right\rbrack,\

    Also,

    ε 0 μ 0 = ε 0 2 ε 0 μ 0 = c ε 0 ( as,  c = 1 ϵ 0 μ 0 ) \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} = \sqrt{\frac{\varepsilon_{0}^{2}}{\varepsilon_{0}\mu_{0}}} = c\varepsilon_{0}\ \left( \text{as,~}c = \frac{1}{\sqrt{\epsilon_{0}\mu_{0}}} \right)

    From (i) and (ii) the dimensions of ε 0 μ 0 \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} will be dimensions of c c times dimensions of ε 0 \varepsilon_{0} :

    ε 0 μ 0 = [ c ] [ ε 0 ] \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}} = \lbrack c\rbrack\left\lbrack \varepsilon_{0} \right\rbrack

    = [ L 1 T 1 ] [ M 1 L 3 T 4 A 2 ] = [ M 1 L 2 T 3 A 2 ] = \left\lbrack L^{1}{\text{\ }T}^{- 1} \right\rbrack\left\lbrack M^{- 1}{\text{\ }L}^{- 3}{\text{\ }T}^{4}{\text{\ }A}^{2} \right\rbrack = \left\lbrack M^{- 1}{\text{\ }L}^{- 2}{\text{\ }T}^{3}{\text{\ }A}^{2} \right\rbrack

    Prev Exam(s):

    JEE MAIN

    - 2019

    , 8 APR SHIFT-1

    Chapter:

    UNITS AND DIMENSIONS

    Question Level:

    L3

    Tags:

    • UNITS AND DIMENSIONS
    • PHYSICS

    Related Topic DIMENSIONS OF PHYSICAL QUANTITIES

    Related Concept DIMENSIONS OF PHYSICAL QUANTITIES