LoginForgot Password

Question 1:

  • Expression for time in terms of G (universal gravitational constant), h (Planck's constant) and c (speed of light) is proportional to

  • A)

    h c 5 G \sqrt{\frac{hc^{5}}{G}}

    B)

    G h c 3 \sqrt{\frac{Gh}{c^{3}}}

    C)

    G h c 5 \sqrt{\frac{Gh}{c^{5}}}

    D)

    c 3 G h \sqrt{\frac{c^{3}}{Gh}}

    Answer:

    Solution:

    Given: Gravitational constant (G), Planck's constant ( h ) (h) and speed of light ( c ) (c) are fundamental units.

    To find: The dimensions of time

    Dimensional formula of G:

    [ G ] = [ M 1 L 3 T 2 ] , ( F = G m 1 m 2 r 2 ) \lbrack G\rbrack = \left\lbrack M^{- 1}{\text{\ }L}^{3}{\text{\ }T}^{- 2} \right\rbrack,\ \left( F = G\frac{m_{1}m_{2}}{r^{2}} \right)

    Dimensional formula of h : h:\

    [ h ] = [ M 1 L 2 T 1 ] , ( λ = h p )   \lbrack h\rbrack = \left\lbrack M^{1}{\text{\ }L}^{2}{\text{\ }T}^{- 1} \right\rbrack,\ \left( \lambda = \frac{h}{p} \right)\text{~}

    Dimensional formula of  c : \text{Dimensional\ formula\ of~}c\text{:\ }

    [ c ] = [ L 1 T 1 ] \lbrack c\rbrack = \left\lbrack L^{1}{\text{\ }T}^{- 1} \right\rbrack

    Let

    [ T ] = ( G ) x ( h ) y ( c ) z \lbrack T\rbrack = (G)^{x}(h)^{y}(c)^{z}

    Putting values of G , h G,h and L L from equations (i), (ii) and (iii) in equation (iv):

    [ T ] = [ M 1 L 3 T 2 ] x [ M 1 L 2 T 1 ] y [ L 1 T 1 ] z \lbrack T\rbrack = \left\lbrack M^{- 1}L^{3}T^{- 2} \right\rbrack^{x}\left\lbrack M^{1}L^{2}T^{- 1} \right\rbrack^{y}\left\lbrack L^{1}T^{- 1} \right\rbrack^{z}

    [ M 0 L 0 T 1 ] = [ M ] x + y [ L ] 3 x + 2 y + z [ T ] 2 x y z \lbrack M^{0}L^{0}T^{1}\rbrack = \lbrack M\rbrack^{- x + y}\lbrack L\rbrack^{3x + 2y + z}\lbrack T\rbrack^{- 2x - y - z}

    Comparing the exponents:

    x + y = 0 3 x + 2 y + z = 0 2 x y z = 1 \begin{matrix} - x + y = 0 \\ 3x + 2y + z = 0 \\ - 2x - y - z = 1 \\ \end{matrix}

    Solving

    x = 1 2 , x = \frac{1}{2},

    y = 1 2  and  y = \frac{1}{2}\text{~and~}

    z = 5 2 z = \frac{- 5}{2}

    t = G 1 2 h 1 2 c 5 2  or  t G h c 5 \begin{matrix} t & \ = G^{\frac{1}{2}}h^{\frac{1}{2}}c^{\frac{- 5}{2}} \\ \text{~or~}\ t & \ \propto \sqrt{\frac{Gh}{c^{5}}} \\ \end{matrix}

    Prev Exam(s):

    JEE MAIN

    - 2019

    , 9 JAN SHIFT-2

    Chapter:

    UNITS AND DIMENSIONS

    Question Level:

    L3

    Tags:

    • PHYSICS
    • UNITS AND DIMENSIONS

    Related Topic DIMENSIONAL ANALYSIS

    Related Concept DIMENSIONAL ANALYSIS