LoginForgot Password

Question 1:

  • Which of the following combinations has the dimension of electrical resistance (ε0 is the permittivity of vacuum and μ0 is the permeability of vacuum)?

  • A)

    μ 0 ε 0 \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}

    B)

    ε 0 μ 0 \sqrt{\frac{\varepsilon_{0}}{\mu_{0}}}\

    C)

    ε 0 μ 0 \frac{\varepsilon_{0}}{\mu_{0}}

    D)

    μ 0 ε 0 \frac{\mu_{0}}{\varepsilon_{0}}

    Answer:

    1

    Solution:

    To find: The combination of ε 0 \varepsilon_{0} and μ o \mu_{o} which has dimensional formula of electrical resistance.

    Method - 1

    Dimensional formula of resistance:

    [ R ] = [ M 1 L 2 T 3 A 2 ] \lbrack R\rbrack = \left\lbrack M^{- 1}{\text{\ }L}^{2}{\text{\ }T}^{- 3}{\text{\ }A}^{2} \right\rbrack

    Dimensions formula of ε 0 \varepsilon_{0} :

    ε 0 = [ M 1 L 3 T 4 A 2 ] \varepsilon_{0} = \left\lbrack M^{- 1}{\text{\ }L}^{- 3}{\text{\ }T}^{4}{\text{\ }A}^{2} \right\rbrack

    (by Coulomb's law)

    Dimensional formula of μ 0 \mu_{0} :

    μ 0 = [ M 1 L 1 T 2 A 2 ] \mu_{0} = \left\lbrack M^{1}{\text{\ }L}^{1}{\text{\ }T}^{- 2}{\text{\ }A}^{- 2} \right\rbrack

    Let the required combination be:

    R = [ ε 0 ] x [ μ 0 } y R = \left\lbrack \varepsilon_{0} \right\rbrack^{x}\left\lbrack \mu_{0} \right\}^{y}

    Putting dimensions or, R , ε 0 & μ 0 R,\varepsilon_{0}\ \&{\ \mu}_{0} from equations

    [ M 1 L 2 T 3 A 2 ] = [ M 1 L 3 T 4 A 2 ] x [ M 1 L 1 T 2 A 2 ] y \left\lbrack M^{1}L^{2}T^{- 3}A^{- 2} \right\rbrack = \left\lbrack M^{- 1}L^{- 3}T^{4}A^{2} \right\rbrack^{x}\left\lbrack M^{1}L^{1}T^{- 2}A^{- 2} \right\rbrack^{y}

    [ M 1 L 2 T 3 A 2 ] = [ M ] x + y [ L ] 3 x + y [ T ] 4 x 2 y [ A ] 2 x 2 y \left\lbrack M^{1}L^{2}T^{- 3}A^{- 2} \right\rbrack = \lbrack M\rbrack^{- x + y}\lbrack L\rbrack^{- 3x + y}\lbrack T\rbrack^{4x - 2y}\lbrack A\rbrack^{2x - 2y}

    Comparing the exponents:

    x + y = 1 3 x + y = 2 4 x 2 y = 3 2 x 2 y = 2 \begin{matrix} - x + y & \ = 1 \\ - 3x + y & \ = 2 \\ 4x - 2y & \ = - 3 \\ 2x - 2y & \ = - 2 \\ \end{matrix}

    Solving above set of linear equations, we get:

    x = 1 2 , x = - \frac{1}{2},

    y = 1 2 y = \frac{1}{2}

    Putting these values in equation (iv), we get the required expression:

    R = μ 0 ε 0 R = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}

    Method - 2

    μ 0 ε 0 = μ 0 ε 0 ε 0 = 1 ε 0 c [ c = v e l o c i t y o f l i g h t ] \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} = \frac{\sqrt{\mu_{0}\ }\sqrt{\varepsilon_{0}}}{\varepsilon_{0}} = \frac{1}{\varepsilon_{0}c}\ \lbrack c = velocity\ of\ light\rbrack

    = F r 2 q 2 c = w o r k × ( r c ) q 2 = V q t q 2 = \frac{Fr^{2}}{q^{2}c} = \frac{work \times \left( \frac{r}{c} \right)}{q^{2}} = \frac{Vqt}{q^{2}}\

    [ I = q t a n d F = 1 4 π ε 0 q 2 r 2 ] \ \left\lbrack \because I = \frac{q}{t}\ and\ F = \frac{1}{4\pi\varepsilon_{0}}\frac{q^{2}}{r^{2}} \right\rbrack

    = V × t I × t = V I = R = \frac{V \times t}{I \times t} = \frac{V}{I} = R

    Prev Exam(s):

    JEE MAIN

    - 2019

    , 12 APR SHIFT-1

    Chapter:

    UNITS AND DIMENSIONS

    Question Level:

    L3

    Tags:

    • PHYSICS
    • UNITS AND DIMENSIONS

    Related Topic DIMENSIONS OF PHYSICAL QUANTITIES

    Related Concept DIMENSIONS OF PHYSICAL QUANTITIES